Different areas of mathematics, and theoretical computer science, freely borrow tools and ideas from each other and these interactions, like barters, can make both parties richer. In fact it's even better than barter: the objects being ideas, you don't have to actually give them up in an exchange. And so it is no surprise that … Continue reading From Discrepancy to Privacy, and back
Advanced Studies in Estate Management: He Who Was Married to Three Women
I have been interested in fairness recently, both fairness in classification and the more traditional setting of fairness in resource allocation. Defining fairness is a tricky thing. Consider for example a resource to be divided between three people with equal claims for ownership. What is the fair division? It sounds natural that equal distribution of the … Continue reading Advanced Studies in Estate Management: He Who Was Married to Three Women
Megalomania, Evolution without Sex, Drugs and Boolean Functions
I love the ambitious spirit of our field. I embrace the view of Theory of Computation as a Lens on the Sciences. Avi Wigderson, a certified TOC-megalomaniac (used as a term of endearment), has been promoting this view for a while now and been making the point that fundamental notions such as Randomness, Entropy, Cryptography, … Continue reading Megalomania, Evolution without Sex, Drugs and Boolean Functions
On Leakage-Resilient Cryptography
In this post I wanted to share some background and thoughts about leakage-resilient cryptography, which has recently been the focus of a rich body of research. Before saying anything more, I do want to emphasize that this is not meant to be a survey – just a collection of thoughts and observations about recent work … Continue reading On Leakage-Resilient Cryptography
Truth vs Proof: The Unique Games Conjecture and Feige’s Hypothesis
Theoretical Computer Science is blessed (or cursed?) with many open problems. For some of these questions, such as the $latex {P}&fg=000000$ vs $latex {NP}&fg=000000$ problem, it seems like it could be decades or more before they reach resolution. So, if we have no proof either way, what do we assume about the answer? We could … Continue reading Truth vs Proof: The Unique Games Conjecture and Feige’s Hypothesis
Inconvenient Truth
Having your assumptions and beliefs challenged by a group of seasoned law enforcement professionals and subject matter experts can be a rather disturbing experience. It is exactly what happened to me this week during the workshop on the role of technology in combating human trafficking, organized by Rane Johnson-Stempson, danah boyd, and the good folks … Continue reading Inconvenient Truth
Community brain
You are heading to Paris for the first time. You finally get there and it is time for dinner, you need to pick a restaurant. Of course you would like to avoid Tourists-Traps. Traditionally, people were relying on rule of thumb, and if they were lucky and knew someone that has some useful information, they … Continue reading Community brain
The Switching Lemma
Hastad's Switching Lemma is one of the gems of computational complexity. The switching lemma analyzes the effect of random restrictions on $latex AC^0$ circuits, which are constant depth circuits with AND, OR and NOT gates of unbounded fanin. It says that such restrictions tends to simplify $latex AC^0$ circuits in surprising ways. An immediate consequence of the switching lemma is strong … Continue reading The Switching Lemma
Interesting new development in Math publishing
Tim Gowers reports on a new set of open access math journals. There will be a Forum of Mathematics:Pi that is supposed to be a generalist math journal, and Forum of Mathematics:Sigma that would have "clusters" for different areas. It will be paid for by Cambridge University Press for the first three years, and will then … Continue reading Interesting new development in Math publishing
Higher Lower Bounds: Just Ask for More!
In memory of Mihai Pătraşcu. Continuing the spirit of the previous post, in this post I will describe a specific technique for proving lower bounds for (static) data structures, when the space is (near) linear. This technique was introduced in the paper by Mihai and Mikkel Thorup, called "HIGHER lower Bounds for Near-Neighbor and F … Continue reading Higher Lower Bounds: Just Ask for More!